Рельсосварочная машина - определение. Что такое Рельсосварочная машина
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Рельсосварочная машина - определение

  • Путевая рельсосварочная самоходная машина (ПРСМ-4) в походном состоянии
Найдено результатов: 346
Рельсосварочная машина         

предназначена для электроконтактной сварки рельсов в длинные отрезки или плети, укладываемые в Бесстыковой путь. Различают стационарные Р. м., работающие на специализированных рельсо-сварочных предприятиях, и передвижные - для работы в полевых условиях. В стационарных условиях сварка рельсов выполняется на поточной линии, в которую входят: станки для выправки погнутых рельсов, удаления наплывов, вырезки дефектных мест; электросварочная машина; установки для механической и термической обработки стыков и контроля их качества.

Передвижные Р. м. (рис.) монтируются на четырёхосной платформе, на которой установлены две П-образные качающиеся рамы со стрелой. По нижним балкам стрелы перемещаются 2 тельфера с подвешенными электросварочными головками, которые получают питание от электростанции мощностью 200 квт, установленной в конце платформы. Для подтаскивания рельсов имеются три лебёдки. Время сварки около 160 сек, усилие осадки 350 кн (35 тс).

Передвижная рельсосварочная машина с П-образной рамой.

Рельсосварочная машина         
Рельсосварочная машина — вид путевой машины, преданазначенный для сварки рельсов в длинные отрезки, особо распространенных при укладке бесстыкового пути. Перемещающийся сварочный агрегат машины монтируется на специальных передвижных платформах.
КОМПАУНД-МАШИНА         
  • Машина с тройным расширением пара
(от англ. compound - составной), двухцилиндровая паровая машина двойного действия с параллельным расположением цилиндров; пар, отработав в одном цилиндре, поступает в другой (большего диаметра).
Компаунд-машина         
  • Машина с тройным расширением пара

двухцилиндровая Паровая машина двойного действия, в которой пар расширяется в цилиндре меньшего диаметра, а затем переходит в цилиндр большего диаметра (цилиндры расположены параллельно).

Вычислительная машина         
  • Счётная машина «Resulta BS 7».
  • «Считающие часы» Вильгельма Шиккарда.
Вычисли́тельная маши́на, счётная маши́на — механизм, электромеханическое или электронное устройство, предназначенное для автоматического выполнения математических операций. В последнее время это понятие чаще всего ассоциируется с различными видами компьютерных систем.
Машина Атвуда         
  • <center>Машина Атвуда
  • 200px
ЛАБОРАТОРНОЕ УСТРОЙСТВО ДЛЯ ИЗУЧЕНИЯ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ С ПОСТОЯННЫМ УСКОРЕНИЕМ
Атвудова машина
Машина Атвуда — лабораторное устройство для изучения поступательного движения с постоянным ускорением. Была изобретена в 1784 году английским физиком и математиком Джорджем Атвудом.
Вычислительная машина         
  • Счётная машина «Resulta BS 7».
  • «Считающие часы» Вильгельма Шиккарда.

устройство или совокупность устройств, предназначенных для механизации и автоматизации процесса обработки информации (вычислений).

Современные В. м. по способу представления информации подразделяются на 3 класса: а) аналоговые вычислительные машины (См. Аналоговая вычислительная машина) (АВМ), в которых информация представлена в виде непрерывно изменяющихся переменных, выраженных физическими величинами (угол поворота вала, сила электрического тока, напряжение и т.д.); б) цифровые вычислительные машины (См. Цифровая вычислительная машина) (ЦВМ), в которых информация представлена в виде дискретных значений переменных (чисел), выраженных комбинацией дискретных значений какой-либо физической величины; в) гибридные вычислительные системы (См. Гибридная вычислительная система), в различных узлах которых информация представлена тем или другим способом.

Исторически первыми появились цифровые вычислительные устройства, например счёты и их многочисленные предшественники (см. Вычислительная техника). В 17 в. французским учёным Б. Паскалем, а позднее немецким математиком Г. В. Лейбницем были построены первые ЦВМ. Первой пригодной для практического применения В. м. стал Арифмометр Томаса де Кольмара (1820). В 1874 был создан получивший широкое распространение арифмометр В. Т. Однера. В начале 20 в. появились Счётно-аналитические машины для выполнения различных статистических, бухгалтерских и финансово-банковских операций.

Идея создания универсальной ЦВМ принадлежит профессору Кембриджского университета Ч. Беббиджу. Он разработал проект (1833) В. м., по своему устройству близкой к современной. Проект опережал запросы времени и технические возможности реализации.

Развитие теории релейно-контактных схем, а также опыт эксплуатации телефонной аппаратуры и счётно-перфорационных машин (См. Счётно-перфорационные машины) позволили в 30-х гг. 20 в. приступить к разработке В. м. с программным управлением первоначально на электромагнитных реле. Первая такая машина "МАРК-1" была построена в США в 1944. Первая электронная ЦВМ "ЭНИАК" (электронный цифровой интегратор и вычислитель) была построена также в США в 1946.

В Советском Союзе электронная ЦВМ "МЭСМ" (малая электронная счётная машина) была разработана в 1950 под руководством академика С. А. Лебедева в АН УССР. "МЭСМ" положила начало работам в области математического электронного машиностроения в СССР. В последующие годы в СССР создан ряд различных по производительности и техническому решению ЦВМ для удовлетворения нужд народного хозяйства (БЭСМ, "Стрела", М-20, М-220, "Минск", "Урал", "Мир" и др.).

Первые устройства непрерывного действия появились в 16-17 вв. К ним относятся Логарифмическая линейка и номограммы для расчётов, связанных с навигацией. В середине 19 в. появились простейшие механические интеграторы. Значительное развитие работы по АВМ получили на рубеже 19 и 20 вв. Были разработаны машины для решения дифференциальных уравнений, электромеханическая интегрирующая машина и др. В СССР начало разработки АВМ относится к 1927 и связано с работами С. А. Гершгорина, М. В. Кирпичёва, И. С. Брука, В. С. Лукьянова и др. В 50-60-х гг. было создано несколько типов АВМ, многие из которых нашли широкое применение.

Развитие электронных В. м. (ЭВМ) тесно связано с достижениями в области электронной техники. Первые ЭВМ создавались на вакуумных радиоприборах; эти В. м. принято называть машинами первого поколения. Развитие полупроводниковой радиоэлектроники позволило перейти к конструированию В. м. второго и третьего поколения; для них характерно усложнение логической схемы и наличие программного обеспечения, являющегося программным продолжением аппаратной части В. м. Технология изготовления В. м. второго поколения мало отличалась от технологии изготовления В. м. первого поколения: на смену вакуумным радиолампам пришли полупроводниковые триоды (транзисторы) и диоды. В. м. третьего поколения выполняются на интегральных схемах (См. Интегральная схема), содержащих в одном модуле десятки транзисторов, резисторов и диодов. Переход к производству В. м. на интегральных схемах потребовал почти полного пересмотра технологии производства ЭВМ.

Основой для построения аналоговых вычислительных машин является теория математического моделирования (См. Моделирование). Используя аналогии между различными по физической природе явлениями, в АВМ моделируют рассчитываемые процессы. Большую часть оборудования АВМ составляют линейные и нелинейные решающие элементы. В электронных АВМ - это операционные усилители постоянного тока (интегратор, усилитель, инвертор), блоки коэффициентов, типичных нелинейностей, запаздывания и т.д. Для решения конкретной задачи блоки АВМ соединяют между собой в необходимых комбинациях. Выходные данные на АВМ получают по показаниям индикаторов в узловых точках схемы. АВМ характеризуется высоким быстродействием, простотой сопряжения с исследуемым объектом, возможностью лёгкого изменения параметров исследуемой задачи как при её подготовке, так и в процессе решения, сравнительно невысокой точностью и ограниченностью класса решаемых задач.

Решение задачи на цифровых вычислительных машинах заключается в последовательном выполнении арифметических операций над числами, соответствующими величинам, представляющим исходные данные. Числа представляются обычно в виде совокупности механических, пневматических или электрических импульсов и фиксируются элементами, каждый из которых может принимать ряд устойчивых состояний, строго соответствующих определённой цифре числа. Перед решением на ЦВМ задача расчленяется на ряд последовательных простых операций и устанавливается их очерёдность, т. е. составляется Программа вычислений.

По способу управления цифровые В. м. подразделяются на 3 класса: с ручным управлением, с жёсткой программой и универсальные. К ЦВМ с ручным управлением относятся настольные клавишные вычислительные машины (См. Клавишная вычислительная машина), арифмометры, рычажные В. м. и др. Современные настольные ЦВМ изготовляются почти полностью на электронных элементах, Управление вычислительным процессом осуществляется вручную, что определяет низкую скорость вычислений. ЦВМ с ручным управлением являются средством механизации расчётных работ и пригодны для решения лишь простейших задач с ограниченным объёмом вычислений.

ЦВМ с жёсткой программой. К ним относятся табуляторы, специализированные машины, ориентированные на решение узкого круга задач, например бортовые вычислители и т.п. В этих В. м. управление вычислительным процессом осуществляется автоматически программой, набираемой на коммутационной доске или постоянно заложенной в конструкцию машины. ЦВМ с коммутируемой программой являются средством частичной автоматизации вычислительного процесса и быстро вытесняются универсальными ЦВМ. В. м. с программой, заложенной в конструкции, применяются в тех случаях, когда нужны простота, надёжность, низкая стоимость, малые габариты и масса, главным образом в условиях разового действия (например, на ракетах).

Универсальные ЦВМ с автоматическим программным управлением - наиболее совершенное средство автоматизации трудоёмких процессов умственной деятельности человека. Современная универсальная ЦВМ представляет собой сложный автоматизированный вычислительный комплекс, в состав которого входят Процессор, оперативное запоминающее устройство, одно или несколько внешних запоминающих устройств большой ёмкости, устройства ввода - вывода информации и др. Управление вычислительным процессом осуществляется устройством управления и программой вычислений, размещаемой в памяти ЭВМ. Загрузка отдельных устройств, координация их работы, управление последовательностью решения задач осуществляются программными средствами. Комплекс программ, выполняющих эти и ряд других функций, называется математическим обеспечением (См. Математическое обеспечение). Для описания решения задачи используются алгоритмические языки алгол, фортран, кобол и др. (см. Язык программирования). Ввод исходных данных, программ и вывод результатов в виде, наиболее удобном для потребителя, осуществляются комплексом устройств ввода - вывода, входящих в состав универсальной ЦВМ (см. Ввод данных, Вывод данных). Исходные данные могут задаваться в виде графиков, цифровой и текстовой документации, изображения рассчитываемого объекта (например, общий вид здания, профиль крыла самолёта и т.д.), светозвуковой индикации и пр.

ЦВМ характеризуются высокой производительностью, точностью получаемых результатов и алгоритмической универсальностью, обусловленной тем, что перестройка ЦВМ на решение новой задачи состоит лишь в замене программы вычислений и исходных данных, хранящихся в памяти В. м., без изменения конструкции самой машины.

Гибридные вычислительные системы состоят из органически связанных между собой АВМ и ЦВМ. Обмен информацией между В. м. непрерывного и дискретного действия осуществляется через специальные преобразователи. Для комбинированной системы типично разделение функций между машинами: АВМ используется для воспроизведения быстро протекающих процессов с ограниченными точностями переменных величин, а ЦВМ - для вычислений с более высокой точностью и для статистической обработки результатов. В гибридной вычислительной системе сочетаются высокая точность и быстродействие, которые сложнее получать с помощью только одной из В. м.

А. Н. Мямлин.

вычислительная машина         
  • Счётная машина «Resulta BS 7».
  • «Считающие часы» Вильгельма Шиккарда.
комплекс технических средств, предназначенный для автоматизации процесса обработки информации и вычислений; различные по структуре и производительности В. м., в основном электронные, применяются, напр., для обработки результатов диагностических исследований, для решения практических задач управления здравоохранением и т. п.
ВЫЧИСЛИТЕЛЬНАЯ МАШИНА         
  • Счётная машина «Resulta BS 7».
  • «Считающие часы» Вильгельма Шиккарда.
комплекс или отдельное устройство, предназначенное для механизации и автоматизации процесса обработки информации и вычислений, выполняемых в соответствии с заданным алгоритмом. Различают следующие типы вычислительных машин: механические, электрические, электронные (ЭВМ), гидравлические, пневматические, оптические и комбинированные.
Разностная машина Чарльза Бэббиджа         
  • лондонском Музее науки]]
МЕХАНИЧЕСКАЯ ВЫЧИСЛИТЕЛЬНАЯ МАШИНА
Разностная машина Чарльза Беббиджа; Разностная машина; Машина Бэббиджа; Разностная машина Бэббиджа; Аналитическая машина Чарльза Бэббиджа
Ра́зностная маши́на Чарльза Бэббиджа — механический аппарат, изобретённый английским математиком Чарльзом Бэббиджем, предназначенный для автоматизации вычислений путём аппроксимации функций многочленами и вычисления конечных разностей. Возможность приближённого представления в многочленах логарифмов и тригонометрических функций позволяет рассматривать эту машину как довольно универсальный вычислительный прибор.

Википедия

Рельсосварочная машина

Рельсосварочная машина — вид путевой машины, преданазначенный для сварки рельсов в длинные отрезки, особо распространенных при укладке бесстыкового пути. Перемещающийся сварочный агрегат машины монтируется на специальных передвижных платформах.